Area of a Rectangle: 2 Videos
Video 1: Area of a rectangle
Video 2: Examples pertaining to areas of rectangles
Video 1: Area of a rectangle
Video 2: Examples pertaining to areas of rectangles
Video 1: Area of a triangle
Video 2: Examples pertaining to the area of triangles
Video 3: Common mistakes made when calculating the area of a triangle
Note: Click on the 'back button' to return to the VLE after watching each video
Determining how fast something will be traveling upon impact when it is released from a given height.
Introduction to magnetism: Wikipedia article that provides an overview of the concept.
The force that acts across the air gaps between magnets is the same force that creates wonders such as the Aurora Borealis. In fact, magnetic effects pervade our lives in myriad ways, from electric motors to medical imaging and computer memory. In this chapter, we introduce magnets and learn how they work and how magnetic fields and electric currents interact.
In this chapter, we’ll use vectors to expand our understanding of forces and motion into two dimensions. Most real-world physics problems (such as with the game of pool pictured here) are, after all, either two- or three-dimensional problems and physics is most useful when applied to real physical scenarios. We start by learning the practical skills of graphically adding and subtracting vectors (by using drawings) and analytically (with math). Once we’re able to work with two-dimensional vectors, we apply these skills to problems of projectile motion, inclined planes, and harmonic motion.
Plotting projectile displacement, acceleration, and velocity as a function of time.
Visualising position, velocity and acceleration in two-dimensions for projectile motion.