Molecular structure of DNA
Molecular structure of DNA. Nucleotide. Nitrogenous base, phosphate.
Molecular structure of DNA. Nucleotide. Nitrogenous base, phosphate.
An elaboration on some of the common misconceptions in dealing with Newton's Third Law. He also shows how to correctly and reliably identify Third Law force pairs.
Outcomes:
Learn about Newton's third law of motion, which states that for every action there is an equal and opposite reaction. Look at multiple examples that illustrate this law, including pushing a block on ice, pushing against a desk, walking on sand, how rockets work, and how an astronaut could save themselves from drifting in space.
Overview of animal and plant cells. Topics include cell walls, vacuoles, chloroplasts, peroxisomes, lysosomes, mitochondria, etc.
Meiosis is a process that creates sex cells (gametes) with half the number of chromosomes of the parent cell. Meiosis has two stages: meiosis I and meiosis II. In meiosis I, homologous chromosomes pair up and exchange genetic material (crossing over). In meiosis II, sister chromatids separate, creating four haploid cells.
How homologous chromosomes separate into two sets. Prophase I, metaphase I, anaphase I, and telophase I.
Outcomes:
Even though molecules, proteins, viruses, and cells are all tiny, there are significant size differences between them. The diameter of a water molecule is roughly 0.28 nanometers. The diameter of the protein hemoglobin is roughly 5 nanometers. The diameter of the HIV virus is roughly 120 nanometers. A red blood cell is 6-8 micrometers.
Skeletons support and protect our bodies. Bugs have exoskeletons outside their bodies, while humans have endoskeletons inside. Our bones are in axial (skull, ribcage, spine) and appendicular (arms, legs) groups. Bone marrow makes blood cells; more specifically, red marrow makes blood and yellow marrow stores fat.